可证明安全 - 2. 等式理论与静态等价

钱宸

网络空间安全学院 山东大学

2025/10/15

Contents

1. 引言与动机

2. 等式理论

3. 静态等价性

引言

• 演绎推理系统可推导出敌手可以明确的知道哪些数值

引言

- 演绎推理系统可推导出敌手可以明确的知道哪些数值
- 无法处理敌手观察两种不同的行为而做出判断

引言

- 演绎推理系统可推导出敌手可以明确的知道哪些数值
- 无法处理敌手观察两种不同的行为而做出判断
- 举例: 电子投票

演绎推理无法解决函数内部的等式推理问题

异或 XOR

- 对于任意密钥 k 和任意消息 m,
- 有 $\operatorname{senc}(m,k\oplus k)=\operatorname{senc}(m,0)$ 或者 $\operatorname{senc}(m\oplus m,k)=\operatorname{senc}(0,k)$

上面例子中的推导关系并不能被演绎推理系统所捕捉

• 等式理论 (Equational Theory) 是对函数符号的等式进行建模

- 等式理论 (Equational Theory) 是对函数符号的等式进行建模
- 等式理论 E 是一个包含若干等式的集合

- 等式理论 (Equational Theory) 是对函数符号的等式进行建模
- 等式理论 E 是一个包含若干等式的集合
- 每个等式形如 l = r, 其中 l 和 r 是术语

- 等式理论 (Equational Theory) 是对函数符号的等式进行建模
- 等式理论 E 是一个包含若干等式的集合
- 每个等式形如 l = r, 其中 l 和 r 是术语
- 等式理论定义了一个最小的等价关系 \equiv_E

- 等式理论 (Equational Theory) 是对函数符号的等式进行建模
- 等式理论 E 是一个包含若干等式的集合
- 每个等式形如 l = r, 其中 l 和 r 是术语
- 等式理论定义了一个最小的等价关系 \equiv_E

- 等式理论 (Equational Theory) 是对函数符号的等式进行建模
- 等式理论 E 是一个包含若干等式的集合
- 每个等式形如 l = r, 其中 l 和 r 是术语
- 等式理论定义了一个最小的等价关系 \equiv_E

定义 (等式理论)

 \equiv_E 是包含 E 中所有等式的最小关系, 并且满足:

- 反身性: $t \equiv_E t$
- 对称性: 如果 $t_1 \equiv_E t_2$, 则 $t_2 \equiv_E t_1$
- 传递性: 如果 $t_1 \equiv_E t_2$ 且 $t_2 \equiv_E t_3$, 则 $t_1 \equiv_E t_3$
- 上下文封闭性: 如果 $t_1 \equiv_E t_2$, 则对于任意上下文 $C[\cdot]$, 有 $C[t_1] \equiv_E C[t_2]$
- 替换封闭性: 如果 $t_1 \equiv_E t_2$, 则对于任意替换 σ , 有 $t_1 \sigma \equiv_E t_2 \sigma$

- 异或操作的等式理论 E_{\oplus} 包含以下等式:
 - $x \oplus 0 = x$

- 异或操作的等式理论 E_{\oplus} 包含以下等式:
 - $x \oplus 0 = x$
 - $x \oplus x = 0$

- 异或操作的等式理论 E_{\oplus} 包含以下等式:
 - $x \oplus 0 = x$
 - $x \oplus x = 0$
 - $x \oplus y = y \oplus x$

- $x \oplus 0 = x$
- $x \oplus x = 0$
- $x \oplus y = y \oplus x$
- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$

- $x \oplus 0 = x$
- $x \oplus x = 0$
- $x \oplus y = y \oplus x$
- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- 例如, 根据 E_{\oplus} , 有 $(a \oplus b) \oplus b \equiv_{E_{\oplus}} a$

- $x \oplus 0 = x$
- $x \oplus x = 0$
- $x \oplus y = y \oplus x$
- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- 例如, 根据 E_{\oplus} , 有 $(a \oplus b) \oplus b \equiv_{E_{\oplus}} a$

- 异或操作的等式理论 E_{\oplus} 包含以下等式:
 - $x \oplus 0 = x$
 - $x \oplus x = 0$
 - $x \oplus y = y \oplus x$
 - $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- 例如, 根据 E_{\oplus} , 有 $(a \oplus b) \oplus b \equiv_{E_{\oplus}} a$

例子

 \diamondsuit $u=k_1\oplus k_2$, $v=k_2\oplus k_3$, 且 $w=k_1\oplus k_3$, 证明 $u\oplus v\equiv_{E_\oplus} w$

• 模幂函数的等式理论 $E_{\rm exp}$ 包含以下等式:

- 模幂函数的等式理论 E_{exp} 包含以下等式:
 - $\exp(\exp(x, y), z) = \exp(\exp(x, z), y)$

- 模幂函数的等式理论 E_{exp} 包含以下等式:
 - $\exp(\exp(x, y), z) = \exp(\exp(x, z), y)$
 - $\exp(\mathsf{mult}(x,y)) = \exp(\exp(x),y)$

- 模幂函数的等式理论 E_{exp} 包含以下等式:
 - $\exp(\exp(x, y), z) = \exp(\exp(x, z), y)$
 - $\exp(\mathsf{mult}(x,y)) = \exp(\exp(x),y)$

- 模幂函数的等式理论 E_{exp} 包含以下等式:
 - $\exp(\exp(x, y), z) = \exp(\exp(x, z), y)$
 - $\exp(\mathsf{mult}(x,y)) = \exp(\exp(x),y)$

例子

 \diamondsuit $u = \exp(g,x)$, $v = \exp(g,y)$, 且 $w = \exp(g, \operatorname{mult}(x,y))$, 证明 $u^y \equiv_{E_{\operatorname{exp}}} w$

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

• \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x
 - adec(aenc(x, pk(y)), y) = x

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x
 - adec(aenc(x, pk(y)), y) = x
 - $\operatorname{fst}(\langle x, y \rangle) = x$

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x
 - adec(aenc(x, pk(y)), y) = x
 - $fst(\langle x, y \rangle) = x$
 - $\bullet \ \operatorname{snd}(\langle x,y\rangle)=y$

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x
 - adec(aenc(x, pk(y)), y) = x
 - $fst(\langle x, y \rangle) = x$
 - $\bullet \ \operatorname{snd}(\langle x,y\rangle)=y$

$$\mathcal{F}_{\mathsf{dec}} = \{\mathsf{sdec}, \mathsf{adec}, \mathsf{fst}, \mathsf{snd}\}.$$

- \mathcal{F}_0 为任意个额外的函数符号集合, 且 $\mathcal{F}_0 \cap (\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}}) = \emptyset$.
- 加密函数的等式理论 E_{dec} 定义在 $T(\mathcal{F}_{std} \cup \mathcal{F}_{dec} \cup \mathcal{F}_0, \mathcal{X})$ 包含以下等式:
 - sdec(senc(x, y), y) = x
 - adec(aenc(x, pk(y)), y) = x
 - $fst(\langle x, y \rangle) = x$
 - $\operatorname{snd}(\langle x,y\rangle)=y$

例子

 $\Leftrightarrow u = \operatorname{senc}(m,k)$, v = k, 且 w = m, 证明 $\operatorname{sdec}(u,v) \equiv_{E_{\operatorname{dec}}} w$

演绎 (deduction) 系统

演绎与归纳

- 演绎 (deduction)是从一般到特殊的推理过程
- 归纳 (induction)是从特殊到一般的推理过程
- 演绎系统是基于一组公理和推理规则, 用于从已知事实推导出新事实的形式系统
- 归纳系统是基于观察和实例, 用于从具体例子中总结出一般规律的形式系统

演绎 (deduction) 系统

演绎与归纳

- 演绎 (deduction)是从一般到特殊的推理过程
- 归纳 (induction)是从特殊到一般的推理过程
- 演绎系统是基于一组公理和推理规则, 用于从已知事实推导出新事实的形式系统
- 归纳系统是基于观察和实例, 用于从具体例子中总结出一般规律的形式系统

定义(演绎系统)

给定一组初始术语 S 和等式理论 E, 演绎系统定义了一组推理规则, 用于生成新的术语. 记为 $S \vdash_E t$, 表示术语 t 可以从初始术语集 S 通过有限次应用推理规则得到.

$$\frac{t_1 \cdots t_n}{f(t_1, \dots, t_n)} \qquad \frac{t}{t'} \text{ if } t =_E t'$$

加密例子

考虑定义在 $\mathcal{T}(\mathcal{F}_{\mathsf{std}} \cup \mathcal{F}_{\mathsf{dec}} \cup \{\oplus\}, \mathcal{X})$ 上的等式理论 $E_{\oplus} \cup E_{\mathsf{enc}}$. 考虑

$$S = \{ \operatorname{senc}(a, a \oplus c), a \oplus b, b \oplus c \}.$$

证明 $S \vdash_{E_{\oplus} \cup E_{\mathsf{enc}}} a$.

定义 (语境)

语境 (Context) 是一个包含零个或多个空位 (holes) 的术语. 记为 $C[\cdot]$, 其中每个空位可以被任意术语替换. 例如, $C[\cdot] = \operatorname{senc}(\cdot, k)$ 是一个语境, 可以将空位替换为任意术语 t 得到 $\operatorname{senc}(t, k)$.

定理 (语境等价 [Abadi and Cortier, 2006])

对于任意术语 t, $S \vdash_E t$ 当且仅当对于任意语境 $C[\cdot]$, 有 $\mathcal{N}(C) = \emptyset$ 且存在 $t_1, \ldots, t_m \in S$ 使得 $t =_E C[t_1, \ldots, t_m]$.

演绎与归纳等价

定理(演绎与归纳等价)

对于任意项集合 S, 以及 t 为项代数 $\mathcal{T}(\mathcal{F}_{std},\mathcal{X})$ 中的项, 有 $S \vdash_{\mathcal{I}_{DY}} t$ 当且仅当 $S \vdash_{\mathcal{E}_{enc}} t$.

静态等价性

演绎也不能完全捕捉敌手的推理能力. 敌手可以观察到消息发送的顺序, 并利用这一信息进行推理.

定义(框架)

- 一个框架 (frame) 为一个表达式 $\phi = \nu \tilde{n} \theta = \nu \tilde{n} \{M_1/x_1, \dots, M_n/x_n\}$. 其中 $\tilde{n} \subseteq \mathcal{N}$ 为 ϕ 中的一组名称, θ 为一个替换, 且 ν 为一个术语.
- 其中 M_1, \ldots, M_n 表示敌手不知道在 \tilde{n} 中的消息的时候获得的信息.
- 我们简写 $\phi = \nu k \theta = \nu (\tilde{n} \cup \{k\}) \theta$.
- $\bullet \ \operatorname{Dom}(\phi) = \operatorname{Dom}(\theta)$

框架样例

例子

令 $\phi = \nu k \{1/x_1, 0/x_2, \text{senc}(0, k)/x_3\}$ 为一个框架, 表示敌手看见两个常数 0, 1, 以及一个用密钥 <math>k 加密的消息 senc(0, k). 并且敌手一开始并不知道 k.

定义(框架下的演绎系统)

给定一个框架 $\phi = \nu \tilde{n}\theta$ 和等式理论 E, 一个项 t 能够被演绎自 ϕ , 记为 $\phi \vdash_E t$, 如果

$$\mathsf{Dom}(\phi) \cup (\mathcal{N} \setminus \tilde{n}) \vdash_E t$$

样例

 $\phi_1=\nu_1(n,k)\theta_1$, 其中 $\theta_1=\{\mathrm{senc}(\langle n,n\rangle,k)/x_1,k/y\}$. 则 $\nu_1\vdash_{E_{\mathsf{Enc}}} n$.

样例

 $\phi_1 = \nu_1(n,k)\theta_1$, 其中 $\theta_1 = \{\operatorname{senc}(\langle n,n\rangle,k)/x_1,k/y\}$. 则 $\nu_1 \vdash_{E_{\mathsf{Enc}}} n$.

M = fst(sdec(x, y)) 被称为策略 (recipe).

定义(策略)

给定一个框架 $\phi = \nu \tilde{n}\theta$ 和等式理论 E, 一个项 M 是自由的如果 $\mathbf{n}(M) \cap \tilde{n} = \emptyset$. 一个项 t 能够被策略 M 生成, 记为 $\phi \vdash_E^M t$, 如果 M 关于 ϕ 是自由的且 $t =_E M\theta$.

定义

给定一个框架 $\phi = \nu \tilde{n}\theta$ 和等式理论 E, 一个项 t 能够被演绎自 ϕ , 记为 $\phi \vdash_E t$, 当且仅 当存在一个策略 M 使得 $\phi \vdash_E^M t$.

静态等价的定义

考虑 $\phi_1 = \{0/x, 1/y\}$ 和 $\phi_2 = \{1/x, 0/y\}$. 敌手显然观测到同样的项.

定义 (α-换位)

给定两个框架 $\phi_1 = \nu_1 \tilde{n}_1 \theta_1$ 和 $\phi_2 = \nu_2 \tilde{n}_2 \theta_2$, 如果存在一个双射 $\pi: \mathsf{Dom}(\theta_1) \to \mathsf{Dom}(\theta_2)$ 使得对于任意 $x \in \mathsf{Dom}(\theta_1)$, 有 $x\theta_1 =_\alpha x\pi\theta_2$, 则称 ϕ_1 和 ϕ_2 是换位的, 记为 $\phi_1 \sim_\alpha \phi_2$.

静态等价的定义

考虑 $\phi_1 = \{0/x, 1/y\}$ 和 $\phi_2 = \{1/x, 0/y\}$. 敌手显然观测到同样的项.

|定义 $(\alpha$ -换位)

给定两个框架 $\phi_1 = \nu_1 \tilde{n}_1 \theta_1$ 和 $\phi_2 = \nu_2 \tilde{n}_2 \theta_2$, 如果存在一个双射 $\pi: \mathsf{Dom}(\theta_1) \to \mathsf{Dom}(\theta_2)$ 使得对于任意 $x \in \mathsf{Dom}(\theta_1)$, 有 $x\theta_1 =_\alpha x\pi\theta_2$, 则称 ϕ_1 和 ϕ_2 是换位的, 记为 $\phi_1 \sim_\alpha \phi_2$.

定义

我们说 $M =_E N$ 在框架 ϕ 下成立, 记为 $(M =_E N)_{\phi}$, 如果存在 \tilde{n} 和 θ 满足 $\phi =_{\alpha} \mu \tilde{n} \theta$, 且 M, N 都是自由的关于 \tilde{n} , 并且 $M\theta \equiv_E N\theta$.

定义(静态等价)

给定两个框架 ϕ_1 和 ϕ_2 关于等式理论 E 静态等价, 如果对于任意项 M,N, 有

$$(M =_E N)_{\phi_1} \iff (M =_E N)_{\phi_2}$$

静态等价

样例]

令 $\phi_1 = \nu \{0/x, 1/y\}$ 和 $\phi_2 = \nu \{1/x, 0/y\}$. 则 ϕ_1 和 ϕ_2 关于任意等式理论静态不等价.

静态等价

样例 1

令 $\phi_1 = \nu \{0/x, 1/y\}$ 和 $\phi_2 = \nu \{1/x, 0/y\}$. 则 ϕ_1 和 ϕ_2 关于任意等式理论静态不等价.

样例 2

令 $\phi_1 = \nu k \{ \mathsf{aenc}(0, \mathsf{pk}(k)) / x, \mathsf{pk}(k) / y \}$ 和 $\phi_2 = \nu k \{ \mathsf{aenc}(1, \mathsf{pk}(k)) / x, \mathsf{pk}(k) / y \}$. 则 ϕ_1 和 ϕ_2 关于等式理论 E_{enc} 静态不等价.

静态等价

样例 1

令 $\phi_1 = \nu\{0/x, 1/y\}$ 和 $\phi_2 = \nu\{1/x, 0/y\}$. 则 ϕ_1 和 ϕ_2 关于任意等式理论静态不等价.

样例 2

令 $\phi_1 = \nu k \{ \mathsf{aenc}(0, \mathsf{pk}(k))/x, \mathsf{pk}(k)/y \}$ 和 $\phi_2 = \nu k \{ \mathsf{aenc}(1, \mathsf{pk}(k))/x, \mathsf{pk}(k)/y \}$. 则 ϕ_1 和 ϕ_2 关于等式理论 E_{enc} 静态不等价.

样例 3

令 $\phi_1 = \nu(k,r)\{\mathsf{aenc}(\langle 0,r\rangle,\mathsf{pk}(k))/x,\mathsf{pk}(k)/y\}$ 和 $\phi_2 = \nu(k,r)\{\mathsf{aenc}(\langle 1,r\rangle,\mathsf{pk}(k))/x,\mathsf{pk}(k)/y\}$. 则 ϕ_1 和 ϕ_2 关于等式理论 E_enc 静态等价.

静态等价的性质

静态等价在限缩和组合下是封闭的

定义

给定两个静态等价的框架 ϕ_1 和 ϕ_2 关于等式理论 E, 则对于任意名称 $n \notin \mathbf{n}(\phi_1) \cup \mathbf{n}(\phi_2)$, 有 $\nu n.\phi_1$ 和 $\nu n.\phi_2$ 关于等式理论 E 静态等价. 并且对于任意静态等价的框架 ϕ_3 , 有 $\phi_1 \cup \phi_3$ 和 $\phi_2 \cup \phi_3$ 关于等式理论 E 静态等价.

References I

Abadi, M. and Cortier, V. (2006).

Deciding knowledge in security protocols under equational theories.

Theoretical Computer Science, 367(1-2):2-32.