
SD04630230: 数字货币与区块链 2023 年 12 月 7 日

Note 1: Naor-Yung 通用转化
Lecturer: 钱宸

免责声明: 该讲义仅用于山东大学网络空间安全学院课程教学，尚未经过通常用于正式出版物的审查。仅在
获得讲师的许可的情况下，可以在课堂外部分发。

1.1 Preliminaries

In this section, we first introduce some useful notations and formal definitions.

Notation: We denote probabilistic polynomial Turing machine by PPT. We denote that two distribution is
computationally indistinguishable by D0 ≈c D1.

Algorithms: We use x
$←− Alg to present an algorithm randomly generating an output x, and x := Alg to

present an algorithm deterministically generating an output x. We use AOAlg(·), to present an algorithm
with oracle access to OAlg.

Pseudo-code: We use check to check if the following condition is fulfilled; the algorithm aborts otherwise.
We use parse x =: y to parse y into the variable x.

Negligible Function: We denote the negligible functions with respect to the security parameter λ by
negl(λ). We recall that a function f is negligible, if for all polynomial p(·), there exists a λ0 such that

∀λ > λ0.f(λ) <
1

p(λ)

Language: For any NP language L, we denote a statement x in language L with witness w by x ∈w L.

1.1.1 Public Key Encryption scheme

Definition 1.1 (Public Key Encryption). A public key encryption scheme consists of three PPT algorithms
PKE = (Setup,Enc,Dec) with the following syntax:

• Setup(1λ) → (pk, sk) : takes the security parameter 1λ as input, and returns a public key pk and a
secret key sk.

• Enc(pk,m; r) → ct : takes the public key pk, the message m, the randomness r as input, and returns a
ciphertext ct.

• Dec(sk, ct)→ m : takes the secret key sk, the ciphertext ct as input, and returns a message m.

We also require the following properties:

• Correctness: For all messages m ∈ M in the message space, for all randomness r ∈ R in the
randomness space, and for all key pairs (pk, sk) $←− Setup(1λ), we have

Dec(sk,Enc(pk,m; r)) = m

1-1

Note 1: Naor-Yung 通用转化 1-2

• Semantic Security: PKE is ε-IND-CPA secure, if for all two-stages PPT adversary A = (A0,A1)

with an internal state st, we first define the security games GameIND-CPAb

PKE,1λ (A) as in Fig. 1.1. We say

GameIND-CPAb

PKE,1λ (A) :

01 (pk, sk) $←− Setup(1λ)
02 (m0,m1, st) $←− A0(pk)
03 r $←− R; ctb := Enc(pk,mb; r)
04 b′

$←− A1(st, ctb)
05 return b′

Figure 1.1: This is the IND-CPA security game with bit b ∈ {0, 1}.

that the public-key encryption scheme PKE is IND-CPA secure, if and only if

ε =
∣∣∣Pr

[
GameIND-CPA0

PKE,1λ (A) = 1
]
− Pr

[
GameIND-CPA1

PKE,1λ (A) = 1
]∣∣∣ ≤ negl(λ).

• IND-CCA1 Security: PKE is ε-IND-CCA1 secure, if for all two-stages PPT adversary A = (A0,A1)

with an internal state st, we first define the security games GameIND-CCA1b
PKE,1λ (A) as in Fig. 1.2.

GameIND-CCA1b
PKE,1λ (A) :

01 (pk, sk) $←− Setup(1λ)
02 (m0,m1, st) $←− AODec(·)

0 (pk)
03 r $←− R; ctb := Enc(pk,mb; r)
04 b′

$←− A1(st, ctb)
05 return b′

Oracle ODec(ct)
06 m := Dec(sk, ct)
07 return m

Figure 1.2: This is the IND-CCA1 security game with bit b ∈ {0, 1}.

We say that the public-key encryption scheme PKE is IND-CCA1 secure, if and only if

ε =
∣∣∣Pr

[
GameIND-CCA10

PKE,1λ (A) = 1
]
− Pr

[
GameIND-CCA11

PKE,1λ (A) = 1
]∣∣∣ ≤ negl(λ).

1.1.2 Non-Interactive Zero-Knowledge Proof

Definition 1.2 (NIZK). Let L be an NP language, an adaptive non-interactive zero-knowledge proof system
consists of three PPT algorithms NIZK = (Setup,Prove,Ver) with the following syntax

• Setup(1λ)→ crs : takes a security parameter 1λ as input, and returns a common reference string crs.

• Prove(crs, x,w) → π : takes a common reference string crs, a statement x, a witness w as input, and
returns π.

• Ver(crs, x, π) → {0, 1} : takes a common reference string crs, a statement x, and a proof π as input,
and returns a result bit b ∈ {0, 1}.

We require the following properties:

Note 1: Naor-Yung 通用转化 1-3

• Completeness: For all statements x ∈w L, for all honestly generated common reference string crs $←−
Setup(1λ), we have

Ver(crs, x,Prove(crs, x,w)) = 1.

• Soundness: NIZK is εsnd-sound, if for all PPT adversary A, we have

Pr
[

Ver(crs, x, π) = 1
∧x /∈ L

∣∣∣∣∣ εsnd = crs $←− Setup(1λ)
π

$←− A(crs, x)

]
≤ negl(λ).

• Zero-Knowledge: NIZK is εzk-zero-knowledge, if for all PPT adversary A with running time tzk,there
exists a two-stage PPT algorithm Sim = (SimSetup, SimProve) with the following syntax:

– SimSetup(1λ) → (crs, td) : takes a security parameter 1λ as input, and returns a crs and a
simulation trapdoor td.

– SimProve(crs, x, td) → π : takes a crs, a statement x, and a trapdoor td as input, and returns a
simulated proof π.

We require that the simulated SimSetup and SimProve are indistinguishable from the real one for any
PPT adversary. More formally, for all PPT adversaries, the following two games are indistinguishable:
We require that the following requirement holds

GameReal
PKE,1λ(A) :

01 crs $←− Setup(1λ)
02 return AOProve(crs,·,·)(crs)

GameSim
PKE,1λ(A) :

03 crs $←− SimSetup(1λ)
04 return AOSimProve(crs,·,·)(crs)

Figure 1.3: This is the indistinguishability game between the real and simulated worlds. Note that
OSimProve(crs, x,w) returns SimProve(crs, x, td) without using w.

εzk =
∣∣∣Pr

[
GameReal

PKE,1λ(A) = 1
]
− Pr

[
GameSim

PKE,1λ(A) = 1
]∣∣∣ ≤ negl(λ).

1.2 Naor-Yung CCA1 construction

Let PKE be a ε-IND-CPA public-key encryption scheme, and NIZK be a (εzk, εsnd)-adaptive non-interactive
zero-knowledge proof system. We recalled the Naor-Yung CCA1 construction that we saw during the lecture.

As in [NY90], we give the detailed construction as in Fig. 1.4

Theorem 1.3 ([NY90]). The public-key encryption scheme given in Fig. 1.4 is ε′-IND-CCA1 secure, with

ε′ ≤ 2ε+ 4εzk + 2εsnd

Proof. We give the proof following a sequence of hybrid games (G0, . . . ,G6), in which G0 = GameIND-CCA10
PKE,1λ

and G6 = GameIND-CCA11
PKE,1λ . By arguing that Gi ≈c Gi+1 for all i ∈ {0, . . . , 5}, we complete the proof.

We give the detailed hybrid game description as follows. We denote by pri the probability that the adversary
outputs 1 in the game Gi. Note that with the above notation, we only need to prove that |pr0 − pr6| ≤ negl(λ)
We summarize all hybrid games in Fig. 1.5.

Note 1: Naor-Yung 通用转化 1-4

Alg Setup(1λ) :
01 (pk0, sk0)

$←− PKE.Setup(1λ)
02 (pk1, sk1)

$←− PKE.Setup(1λ)
03 crs $←− NIZK.Setup(1λ)
04 pk := (pk0, pk1, crs); sk := sk0
Alg Dec(sk, ct) :
05 parse sk0 =: sk; (ct0, ct1, π) =: ct
06 check NIZK.Ver(crs, (ct0, ct1), π) = 1
07 m := PKE.Dec(sk0, ct0)
08 return m

Alg Enc(pk,m) :
09 parse (pk0, pk1, crs) =: pk
10 r0, r1 $←− R
11 ct0 $←− PKE.Enc(pk0,m; r0)
12 ct1 $←− PKE.Enc(pk1,m; r1)
13 π

$←− Prove(crs, (ct0, ct1), (m, r0, r1))
14 return (ct0, ct1, π)

Figure 1.4: This is CCA1 Naor-Yung construction.

G0 : This is the initial security game with the challenge bit b = 0.

G1 : This game is the same as in G0 except that the challenger uses Sim for simulating the proof instead of
honestly generating the zero-knowledge proofs.

Since the only difference is whether using the simulator to generate the proofs, we have

|pr0 − pr1| ≤ εzk.

G2 : In this game, we change the generation of ct1. In G2, ct1 is an encryption of m1 instead of m0.

Notice that, the adversary A has only access of ODec(·) which uses only sk0. Therefore, any adversary
B which can distinguish G2 from G1 can also break the IND-CPA security of the underlying encryption
scheme. Thus, we have

|pr2 − pr1| ≤ ε.

G3 : In G3, we switch the the decryption key from sk0 to sk1.

To analyze the probability of distinguishing G2 from G3, we define a bad event Bad. Bad happens when the
adversary submits a ciphertext ct = (ct0, ct1, π) to the decryption oracle with Dec(sk0, ct0) ̸= Dec(sk1, ct1)
and Ver(crs, (ct0, ct1), π) = 1. Our first observation is that the adversary’s view is different in G2 and G3

only if Bad happens in G2. Therefore, we have |pr2 − pr3| ≤ Pr[Bad]. Our second observation is that Bad
can also happen in G0, G1 and G2, we denote these event by Badi with i ∈ {0, 1, 2}. We can have the
following analysis:

• In G0 the crs is generated by an honest NIZK.Setup algorithm, we have Bad0 ≤ εsnd.

• Since the probability of distinguishing G0 and G1 is bounded by εzk, and Bad can be detected by the
adversary himself, we have

Pr[Bad1] ≤ Pr[Bad0] + εzk = εsnd + εzk

• The change in G2 happens after all decryption queries. Therefore, we have Pr[Bad2] = Pr[Bad1] ≤
εsnd + εzk.

Note 1: Naor-Yung 通用转化 1-5

In summary, we have

|pr3 − pr2| ≤ εsnd + εzk.

G4 : In the game G4, we change the message m0 in ct0 to ct1.

Similar to the argument in G2, now the decryption oracle does not use sk0, thus we can bound the probability
of distinguishing G3 and G4 by the IND-CPA security of PKE. We have

|pr4 − pr3| ≤ ε.

G5 : In the game G5, we change back the decryption oracle using sk0. Similarly to G3, we have

|pr5 − pr4| ≤ εsnd + εzk.

G6 : In G6, we use the (Setup,Prove) instead of (SimSetup, SimProve). Similar to G1, we have

|pr6 − pr5| ≤ εzk.

We can notice that G6 is exactly the same as GameIND-CCA11
PKE,1λ . By the triangle inequality we have

|pr6 − pr0| ≤ |pr6 − pr5|+ |pr5 − pr4|+ |pr4 − pr3|+ |pr3 − pr2|+ |pr2 − pr1|+ |pr1 − pr0|
≤ 2ε+ 4εzk + 2εsnd.

GameIND-CCA1
PKE,1λ (A)

01 (pk0, sk0)
$←− PKE.Setup(1λ)

02 (pk1, sk1)
$←− PKE.Setup(1λ)

03 crs $←− NIZK.Setup(1λ) //G0,6

04 (crs, td) $←− NIZK.SimSetup(1λ) //G1−5

05 pk := (pk0, pk1, crs); sk := sk0
06 (m0,m1, st) $←− AODec(·)

0 (pk)
07 r0, r1 $←− R
08 ct0 $←− PKE.Enc(pk0,m0; r0) G0−3

09 ct0 $←− PKE.Enc(pk0,m1; r0) G4−6

10 ct1 $←− PKE.Enc(pk1,m0; r1) //G0−1

11 ct1 $←− PKE.Enc(pk1,m1; r1) //G2−6

12 π
$←− Prove(crs, (ct0, ct1), (m, r0, r1)) //G0,6

13 π
$←− SimProve(crs, td, (ct0, ct1)) //G1−5

14 ct := (ct0, ct1, π)
15 b′

$←− A1(st, ct)
16 return b′

Oracle ODec(sk, ct) :
17 parse sk0 =: sk; (ct0, ct1, π) =: ct
18 check NIZK.Ver(crs, (ct0, ct1), π) = 1
19 m := PKE.Dec(sk0, ct0) //G0−2,5−6

20 m := PKE.Dec(sk1, ct0) //G3−4

21 return m

Figure 1.5: This is a summary of all hybrid games. The code line ends with //Gi only appears in security
game Gi.

Note 1: Naor-Yung 通用转化 1-6

References

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd Annual ACM Symposium on Theory of Computing, pages 427–437, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

	Preliminaries
	Public Key Encryption scheme
	Non-Interactive Zero-Knowledge Proof

	Naor-Yung CCA1 construction

