SD04630230: 数字货币与区块链 2023 年 12 月 7 日

Note 1: Naor-Yung 通用转化

Lecturer: 钱宸

免责声明: 该讲义仅用于山东大学网络空间安全学院课程教学,尚未经过通常用于正式出版物的审查。仅在 获得讲师的许可的情况下,可以在课堂外部分发。

1.1 Preliminaries

In this section, we first introduce some useful notations and formal definitions.

Notation: We denote probabilistic polynomial Turing machine by PPT. We denote that two distribution is computationally indistinguishable by $\mathcal{D}_0 \approx_c \mathcal{D}_1$.

Algorithms: We use $x \stackrel{\$}{\leftarrow}$ Alg to present an algorithm randomly generating an output *x*, and $x :=$ Alg to present an algorithm deterministically generating an output *x*. We use $\mathcal{A}^{OAlg(\cdot)}$, to present an algorithm with oracle access to OAlg.

Pseudo-code: We use **check** to check if the following condition is fulfilled; the algorithm aborts otherwise. We use **parse** $x =: y$ to parse *y* into the variable x.

Negligible Function: We denote the negligible functions with respect to the security parameter λ by negl(λ). We recall that a function f is negligible, if for all polynomial $p(\cdot)$, there exists a λ_0 such that

$$
\forall \lambda > \lambda_0 . f(\lambda) < \frac{1}{\mathsf{p}(\lambda)}
$$

Language: For any NP language \mathcal{L} , we denote a statement x in language \mathcal{L} with witness w by $x \in W$.

1.1.1 Public Key Encryption scheme

Definition 1.1 (Public Key Encryption)**.** *A public key encryption scheme consists of three* PPT *algorithms* PKE = (Setup*,* Enc*,* Dec) *with the following syntax:*

- Setup(1^{λ}) \rightarrow (pk, sk) : *takes the security parameter* 1^{λ} *as input, and returns a public key* pk *and a secret key* sk*.*
- Enc(pk, m; r) \rightarrow ct : *takes the public key* pk, *the message* m, *the randomness* r *as input, and returns a ciphertext* ct*.*
- Dec(sk, ct) \rightarrow m : *takes the secret key* sk, *the ciphertext* ct *as input, and returns a message* m.

We also require the following properties:

• **Correctness:** *For all messages* m *∈ M in the message space, for all randomness* r *∈ R in the randomness space, and for all key pairs* (pk, sk) ← Setup(1^{$λ$}), we have

$$
Dec(\mathsf{sk}, Enc(\mathsf{pk}, m; r)) = m
$$

• **Semantic Security:** PKE *is* ε -IND-CPA *secure, if for all two-stages* PPT *adversary* $\mathcal{A} = (\mathcal{A}_0, \mathcal{A}_1)$ *with an internal state* st, we first define the security games $\textsf{Game}_{\textsf{PKE},1}^{\text{IND-CPA}{}_{b}}(\mathcal{A})$ as in Fig. [1.1](#page-1-0). We say

> $\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CPA}_b}(\mathcal{A}):$ 01 (pk*,*sk) \$ *←−* Setup(1*^λ*) 02 (m0*,* m1*,*st) \$*←− A*0(pk) 03 r \$*←− R*; ct*^b* := Enc(pk*,* m*b*;r) 04 *b ′* \$*←− A*1(st*,* ct*b*) 05 $return l$ *′*

Figure 1.1: This is the IND-CPA security game with bit $b \in \{0, 1\}$.

that the public-key encryption scheme PKE *is* IND-CPA *secure, if and only if*

$$
\varepsilon = \left|\Pr\Big[\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CPA}_0}(\mathcal{A}) = 1\Big] - \Pr\Big[\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CPA}_1}(\mathcal{A}) = 1\Big]\right| \leq \mathsf{negl}(\lambda).
$$

• IND-CCA1 **Security:** PKE *is* ε -IND-CCA1 *secure, if for all two-stages* PPT *adversary* $A = (A_0, A_1)$ *with an internal state* st, we first define the security games $\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CCA1}\iota}(\mathcal{A})$ *as in Fig.* [1.2](#page-1-1)*.*

> $\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CCA1}_b}(\mathcal{A}):$ 01 (pk*,*sk) \$ *←−* Setup(1*^λ*) 02 (m₀, m₁, st) $\stackrel{\$}{\leftarrow}$ A₀^{ODec(·)}(pk) 03 r \$*←− R*; ct*^b* := Enc(pk*,* m*b*;r) 04 *b ′* \$*←− A*1(st*,* ct*b*) 05 return *b ′* **Oracle** ODec(ct) 06 $m := \textsf{Dec}(\textsf{sk}, \textsf{ct})$ 07 return *m*

Figure 1.2: This is the IND-CCA1 security game with bit $b \in \{0, 1\}$.

We say that the public-key encryption scheme PKE *is* IND-CCA1 *secure, if and only if*

$$
\varepsilon = \left|\Pr\Big[\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CCA1}_0}(\mathcal{A}) = 1\Big] - \Pr\Big[\mathsf{Game}_{\mathsf{PKE},1^\lambda}^{\text{IND-CCA1}_1}(\mathcal{A}) = 1\Big]\right| \le \mathsf{negl}(\lambda).
$$

1.1.2 Non-Interactive Zero-Knowledge Proof

Definition 1.2 (NIZK)**.** *Let L be an* NP *language, an adaptive non-interactive zero-knowledge proof system consists of three* PPT *algorithms* NIZK = (Setup*,* Prove*,* Ver) *with the following syntax*

- Setup(1^{λ}) \rightarrow crs : *takes a security parameter* 1^{λ} *as input, and returns a common reference string* crs.
- Prove(crs, x, w) $\rightarrow \pi$: *takes a common reference string* crs, a statement x, a witness w as input, and *returns π.*
- $\text{Ver}(\text{crs}, \text{x}, \pi) \rightarrow \{0, 1\}$: *takes a common reference string* crs, a statement x, and a proof π as input, *and returns a result bit* $b \in \{0, 1\}$ *.*

We require the following properties:

• **Completeness:** *For all statements* x *∈*^w *L, for all honestly generated common reference string* crs \$ *←−* Setup(1*^λ*)*, we have*

$$
Ver(crs, x, Prove(crs, x, w)) = 1.
$$

• **Soundness:** NIZK *is ε*snd*-sound, if for all* PPT *adversary A, we have*

$$
\Pr\left[\begin{array}{l}\mathsf{Ver}(\mathsf{crs},\mathsf{x},\pi)=1\\\wedge\mathsf{x}\notin\mathcal{L}\end{array}\bigg|\begin{array}{l} \varepsilon_{\mathsf{snd}}=\mathsf{crs}\overset{\$}\leftarrow\mathsf{Setup}(1^\lambda)\\ \pi\overset{\$}\leftarrow\mathcal{A}(\mathsf{crs},\mathsf{x})\end{array}\right]\leq {\mathsf{negl}}(\lambda).
$$

- **Zero-Knowledge:** NIZK *is ε*zk*-zero-knowledge, if for all* PPT *adversary A with running time t*zk*,there exists a two-stage* PPT *algorithm* Sim = (SimSetup*,* SimProve) *with the following syntax:*
	- $-$ SimSetup(1^{λ}) \rightarrow (crs, td) : *takes a security parameter* 1^{λ} *as input, and returns a* crs *and a simulation trapdoor* td*.*
	- $-$ SimProve(crs, x, td) $\rightarrow \pi$: *takes a* crs, *a statement* x, *and a trapdoor* td *as input, and returns a simulated proof π.*

We require that the simulated SimSetup *and* SimProve *are indistinguishable from the real one for any* PPT *adversary. More formally, for all* PPT *adversaries, the following two games are indistinguishable: We require that the following requirement holds*

$\big $ Game $^{Real}_{\mathsf{PKE}, 1^\lambda}(\mathcal{A})$:	Game ${}_{\mathsf{PKE}\,1}^{Sim}$ $_{(\mathcal{A})}$:
01 crs $\xleftarrow{\$}$ Setup (1^{λ}) 02 return $\mathcal{A}^{\text{OProve}(crs,\cdot,\cdot)}(crs)$	03 crs $\xleftarrow{\$}$ SimSetup(1 ^{λ})
	04 return $\mathcal{A}^{\text{OSimProve}(crs,\cdot,\cdot)}(crs)$

Figure 1.3: This is the indistinguishability game between the real and simulated worlds. Note that OSimProve(crs*,* x*,*w) returns SimProve(crs*,* x*,*td) without using w.

$$
\varepsilon_{\mathsf{zk}} = \Big|\mathrm{Pr}\Big[\mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{Real}(\mathcal{A}) = 1\Big] - \mathrm{Pr}\Big[\mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{Sim}(\mathcal{A}) = 1\Big]\Big| \leq \mathsf{negl}(\lambda).
$$

1.2 Naor-Yung CCA1 construction

Let PKE be a *ε*-IND-CPA public-key encryption scheme, and NIZK be a (*ε*zk*, ε*snd)-adaptive non-interactive zero-knowledge proof system. We recalled the Naor-Yung CCA1 construction that we saw during the lecture.

As in [\[NY90](#page-5-0)], we give the detailed construction as in Fig. [1.4](#page-3-0)

Theorem 1.3 ([[NY90\]](#page-5-0))**.** *The public-key encryption scheme given in Fig. [1.4](#page-3-0) is ε ′ -*IND-CCA1 *secure, with*

$$
\varepsilon' \leq 2\varepsilon + 4\varepsilon_{\mathsf{zk}} + 2\varepsilon_{\mathsf{snd}}
$$

Proof. We give the proof following a sequence of hybrid games (G_0, \ldots, G_6) , in which $G_0 = \text{Game}_{\text{PKE},1^{\lambda}}^{\text{IND-CCA10}}$ and $\mathbf{G}_6 = \text{Game}_{\text{PKE},1^{\lambda}}^{\text{IND-CCA1}_1}$. By arguing that $\mathbf{G}_i \approx_c \mathbf{G}_{i+1}$ for all $i \in \{0, \ldots, 5\}$, we complete the proof.

We give the detailed hybrid game description as follows. We denote by pr_i the probability that the adversary outputs 1 in the game G_i . Note that with the above notation, we only need to prove that $|\mathsf{pr}_0 - \mathsf{pr}_6| \le \mathsf{negl}(\lambda)$ We summarize all hybrid games in Fig. [1.5](#page-4-0).

 \mathbf{Alg} Setup (1^{λ}) : (pk⁰ *,*sk⁰) \$ *←−* PKE*.*Setup(1*^λ*) (pk¹ *,*sk¹) \$ *←−* PKE*.*Setup(1*^λ*) crs \$ *←−* NIZK*.*Setup(1*^λ*) $\mathsf{pk} := (\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{crs})$; sk $:= \mathsf{sk}_0$ **Alg** Dec(sk*,* ct) : $\overline{\text{05 parse sk}_0 =: \text{sk}}$; $(\text{ct}_0, \text{ct}_1, \pi) =: \text{ct}$ **check** NIZK.Ver(crs, $(ct_0, ct_1), \pi$) = 1 $m := PKE.Dec(sk₀, ct₀)$ 08 return m **Alg** Enc(pk*,* m) : $\overline{\mathsf{op\,parse}\left(\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{crs}\right)} =: \mathsf{pk}$ r0*,*r¹ \$*←− R* ct⁰ \$ *←−* PKE*.*Enc(pk⁰ *,* m;r0) ct¹ \$ *←−* PKE*.*Enc(pk¹ *,* m;r1) *π* \$ *←−* Prove(crs*,*(ct0*,* ct1)*,*(m*,*r0*,*r1)) **return** (ct_0, ct_1, π)

Figure 1.4: This is CCA1 Naor-Yung construction.

 \mathbf{G}_0 : This is the initial security game with the challenge bit $b = 0$.

G¹ : This game is the same as in **G**⁰ except that the challenger uses Sim for simulating the proof instead of honestly generating the zero-knowledge proofs.

Since the only difference is whether using the simulator to generate the proofs, we have

$$
|\mathsf{pr}_0 - \mathsf{pr}_1| \leq \varepsilon_{\mathsf{zk}}.
$$

 \mathbf{G}_2 : In this game, we change the generation of ct_1 . In \mathbf{G}_2 , ct_1 is an encryption of m_1 instead of m_0 .

Notice that, the adversary A has only access of $\mathsf{ODec}(\cdot)$ which uses only sk_0 . Therefore, any adversary β which can distinguish \mathbf{G}_2 from \mathbf{G}_1 can also break the IND-CPA security of the underlying encryption scheme. Thus, we have

$$
|\mathrm{pr}_2-\mathrm{pr}_1|\leq \varepsilon.
$$

 \mathbf{G}_3 : In \mathbf{G}_3 , we switch the the decryption key from sk_0 to sk_1 .

To analyze the probability of distinguishing **G**² from **G**3, we define a bad event Bad. Bad happens when the adversary submits a ciphertext $ct = (ct_0, ct_1, \pi)$ to the decryption oracle with $Dec(sk_0, ct_0) \neq Dec(sk_1, ct_1)$ and $\text{Ver}(\text{cr}_5,(\text{ct}_0,\text{ct}_1),\pi) = 1$. Our first observation is that the adversary's view is different in \mathbf{G}_2 and \mathbf{G}_3 only if Bad happens in G_2 . Therefore, we have $|\mathsf{pr}_2 - \mathsf{pr}_3| \leq \Pr[\mathsf{Bad}]$. Our second observation is that Bad can also happen in \mathbf{G}_0 , \mathbf{G}_1 and \mathbf{G}_2 , we denote these event by Bad_i with $i \in \{0,1,2\}$. We can have the following analysis:

- In \mathbf{G}_0 the crs is generated by an honest NIZK. Setup algorithm, we have $\mathsf{Bad}_0 \leq \varepsilon_{\mathsf{snd}}$.
- Since the probability of distinguishing \mathbf{G}_0 and \mathbf{G}_1 is bounded by ε_{zk} , and Bad can be detected by the adversary himself, we have

$$
\Pr[\mathsf{Bad}_1] \leq \Pr[\mathsf{Bad}_0] + \varepsilon_{\mathsf{zk}} = \varepsilon_{\mathsf{snd}} + \varepsilon_{\mathsf{zk}}
$$

• The change in \mathbf{G}_2 happens after all decryption queries. Therefore, we have $\Pr[\mathsf{Bad}_2] = \Pr[\mathsf{Bad}_1] \leq \Pr[\mathsf{Bad}_2]$ ε _{snd} + ε _{zk}.

In summary, we have

$$
|\text{pr}_3-\text{pr}_2|\leq \varepsilon_{\text{snd}}+\varepsilon_{\text{zk}}.
$$

 \mathbf{G}_4 : In the game \mathbf{G}_4 , we change the message \mathbf{m}_0 in ct_0 to ct_1 .

Similar to the argument in \mathbf{G}_2 , now the decryption oracle does not use sk_0 , thus we can bound the probability of distinguishing **G**³ and **G**⁴ by the IND-CPA security of PKE. We have

$$
|\mathsf{pr}_4-\mathsf{pr}_3|\leq \varepsilon.
$$

 \mathbf{G}_5 : In the game \mathbf{G}_5 , we change back the decryption oracle using $s\mathsf{k}_0$. Similarly to \mathbf{G}_3 , we have

$$
|\text{pr}_5-\text{pr}_4|\leq \varepsilon_{\text{snd}}+\varepsilon_{\text{zk}}.
$$

G⁶ : In **G**6, we use the (Setup*,* Prove) instead of (SimSetup*,* SimProve). Similar to **G**1, we have

$$
|\mathrm{pr}_6-\mathrm{pr}_5|\leq \varepsilon_{\mathrm{zk}}.
$$

We can notice that \mathbf{G}_6 is exactly the same as $\mathsf{Game}_{\mathsf{PKE},1}^{\text{IND-CCA1}}$. By the triangle inequality we have

$$
|\mathsf{pr}_6 - \mathsf{pr}_0| \leq |\mathsf{pr}_6 - \mathsf{pr}_5| + |\mathsf{pr}_5 - \mathsf{pr}_4| + |\mathsf{pr}_4 - \mathsf{pr}_3| + |\mathsf{pr}_3 - \mathsf{pr}_2| + |\mathsf{pr}_2 - \mathsf{pr}_1| + |\mathsf{pr}_1 - \mathsf{pr}_0|
$$

$$
\leq 2\varepsilon + 4\varepsilon_{\mathsf{zk}} + 2\varepsilon_{\mathsf{snd}}.
$$

Figure 1.5: This is a summary of all hybrid games. The code line ends with $//\mathbf{G}_i$ only appears in security game **G***ⁱ* .

References

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In *22nd Annual ACM Symposium on Theory of Computing*, pages 427–437, Baltimore, MD, USA, May 14–16, 1990. ACM Press.