SD04630230: 数字货币与区块链

2023年12月7日

Note 1: Naor-Yung 通用转化

Lecturer: 钱宸

免责声明: 该讲义仅用于山东大学网络空间安全学院课程教学,尚未经过通常用于正式出版物的审查。仅在获得讲师的许可的情况下,可以在课堂外部分发。

1.1 Preliminaries

In this section, we first introduce some useful notations and formal definitions.

<u>Notation</u>: We denote probabilistic polynomial Turing machine by PPT. We denote that two distribution is computationally indistinguishable by $\mathcal{D}_0 \approx_c \mathcal{D}_1$.

Algorithms: We use $x \stackrel{\$}{\leftarrow} \text{Alg}$ to present an algorithm randomly generating an output x, and x := Alg to present an algorithm deterministically generating an output x. We use $\mathcal{A}^{\text{OAlg}(\cdot)}$, to present an algorithm with oracle access to OAlg.

<u>Pseudo-code</u>: We use **check** to check if the following condition is fulfilled; the algorithm aborts otherwise. We use **parse** x =: y to parse y into the variable x.

Negligible Function: We denote the negligible functions with respect to the security parameter λ by $\operatorname{negl}(\lambda)$. We recall that a function f is negligible, if for all polynomial $p(\cdot)$, there exists a λ_0 such that

$$\forall \lambda > \lambda_0.\mathsf{f}(\lambda) < \frac{1}{\mathsf{p}(\lambda)}$$

Language: For any NP language \mathcal{L} , we denote a statement x in language \mathcal{L} with witness w by $x \in_{w} \mathcal{L}$.

1.1.1 Public Key Encryption scheme

Definition 1.1 (Public Key Encryption). A public key encryption scheme consists of three PPT algorithms PKE = (Setup, Enc, Dec) with the following syntax:

- Setup(1^λ) → (pk, sk) : takes the security parameter 1^λ as input, and returns a public key pk and a secret key sk.
- $Enc(pk, m; r) \rightarrow ct$: takes the public key pk, the message m, the randomness r as input, and returns a ciphertext ct.
- $Dec(sk, ct) \rightarrow m$: takes the secret key sk, the ciphertext ct as input, and returns a message m.

We also require the following properties:

• <u>Correctness</u>: For all messages $m \in \mathcal{M}$ in the message space, for all randomness $r \in \mathcal{R}$ in the randomness space, and for all key pairs $(pk, sk) \stackrel{\$}{\leftarrow} Setup(1^{\lambda})$, we have

$$Dec(sk, Enc(pk, m; r)) = m$$

• Semantic Security: PKE is ε -IND-CPA secure, if for all two-stages PPT adversary $\mathcal{A} = (\mathcal{A}_0, \mathcal{A}_1)$ with an internal state st, we first define the security games $\mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CPA}_b}(\mathcal{A})$ as in Fig. 1.1. We say

 $\begin{array}{|c|c|} \hline \mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CPA}_{b}}(\mathcal{A}) : \\ & \texttt{O1} \; (\mathsf{pk},\mathsf{sk}) \xleftarrow{\$} \mathsf{Setup}(1^{\lambda}) \\ & \texttt{O2} \; (\mathsf{m}_{0},\mathsf{m}_{1},\mathsf{st}) \xleftarrow{\$} \mathcal{A}_{0}(\mathsf{pk}) \\ & \texttt{O3} \; \mathsf{r} \xleftarrow{\$} \mathcal{R}; \; \mathsf{ct}_{b} := \mathsf{Enc}(\mathsf{pk},\mathsf{m}_{b};\mathsf{r}) \\ & \texttt{O4} \; b' \xleftarrow{\$} \mathcal{A}_{1}(\mathsf{st},\mathsf{ct}_{b}) \\ & \texttt{O5} \; \mathbf{return} \; b' \end{array}$

Figure 1.1: This is the IND-CPA security game with bit $b \in \{0, 1\}$.

that the public-key encryption scheme PKE is IND-CPA secure, if and only if

$$\varepsilon = \left| \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{\mathrm{IND-CPA}_{0}}(\mathcal{A}) = 1 \Big] - \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{\mathrm{IND-CPA}_{1}}(\mathcal{A}) = 1 \Big] \right| \le \mathsf{negl}(\lambda).$$

• <u>IND-CCA1 Security</u>: PKE is ε -IND-CCA1 secure, if for all two-stages PPT adversary $\mathcal{A} = (\mathcal{A}_0, \mathcal{A}_1)$ with an internal state st, we first define the security games $\mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CCA1}_b}(\mathcal{A})$ as in Fig. 1.2.

 $\begin{array}{ll} \mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CCA1}_{b}}(\mathcal{A}): & \mathsf{Oracle ODec(ct)} \\ & \text{of } (\mathsf{pk},\mathsf{sk}) \stackrel{\$}{\leftarrow} \mathsf{Setup}(1^{\lambda}) & \text{of } m := \mathsf{Dec}(\mathsf{sk},\mathsf{ct}) \\ & \text{of } m := \mathsf{Dec}(\mathsf{sk},\mathsf{ct}) \\ & \text{of } return \ m \end{array}$

Figure 1.2: This is the IND-CCA1 security game with bit $b \in \{0, 1\}$.

We say that the public-key encryption scheme PKE is IND-CCA1 secure, if and only if

$$\varepsilon = \left| \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{\mathrm{IND-CCA1}_{0}}(\mathcal{A}) = 1 \Big] - \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{\mathrm{IND-CCA1}_{1}}(\mathcal{A}) = 1 \Big] \right| \le \mathsf{negl}(\lambda).$$

1.1.2 Non-Interactive Zero-Knowledge Proof

Definition 1.2 (NIZK). Let \mathcal{L} be an NP language, an adaptive non-interactive zero-knowledge proof system consists of three PPT algorithms NIZK = (Setup, Prove, Ver) with the following syntax

- Setup $(1^{\lambda}) \rightarrow \text{crs}$: takes a security parameter 1^{λ} as input, and returns a common reference string crs.
- Prove(crs, x, w) $\rightarrow \pi$: takes a common reference string crs, a statement x, a witness w as input, and returns π .
- Ver(crs, x, π) → {0,1}: takes a common reference string crs, a statement x, and a proof π as input, and returns a result bit b ∈ {0,1}.

We require the following properties:

• Completeness: For all statements $x \in_{w} \mathcal{L}$, for all honestly generated common reference string crs \leftarrow Setup (1^{λ}) , we have

$$Ver(crs, x, Prove(crs, x, w)) = 1$$

• <u>Soundness</u>: NIZK is ε_{snd} -sound, if for all PPT adversary \mathcal{A} , we have

$$\Pr\left[\begin{array}{c|c} \mathsf{Ver}(\mathsf{crs},\mathsf{x},\pi)=1 \\ \wedge\mathsf{x}\notin\mathcal{L} \end{array} \middle| \begin{array}{c} \varepsilon_{\mathsf{snd}}=\mathsf{crs} \stackrel{\$}{\leftarrow} \mathsf{Setup}(1^{\lambda}) \\ \pi \stackrel{\$}{\leftarrow} \mathcal{A}(\mathsf{crs},\mathsf{x}) \end{array} \right] \leq \mathsf{negl}(\lambda).$$

- **Zero-Knowledge:** NIZK is ε_{zk} -zero-knowledge, if for all PPT adversary \mathcal{A} with running time t_{zk} , there exists a two-stage PPT algorithm Sim = (SimSetup, SimProve) with the following syntax:
 - SimSetup $(1^{\lambda}) \rightarrow (crs, td)$: takes a security parameter 1^{λ} as input, and returns a crs and a simulation trapdoor td.
 - SimProve(crs, x, td) $\rightarrow \pi$: takes a crs, a statement x, and a trapdoor td as input, and returns a simulated proof π .

We require that the simulated SimSetup and SimProve are indistinguishable from the real one for any PPT adversary. More formally, for all PPT adversaries, the following two games are indistinguishable: We require that the following requirement holds

$\boxed{Game^{Real}_{PKE,1^{\lambda}}(\mathcal{A}):}$	$Game^{Sim}_{PKE,1^{\lambda}}(\mathcal{A})$:
$\boxed{\begin{smallmatrix} \\ 01 \\ \text{ors} & \stackrel{\$}{\leftarrow} Setup(1^{\lambda}) }$	$_{03}$ crs $\stackrel{\$}{\leftarrow}$ SimSetup (1^{λ})
02 return $\mathcal{A}^{OProve(crs,\cdot,\cdot)}(crs)$	04 return $\mathcal{A}^{OSimProve(crs,\cdot,\cdot)}(crs)$

Figure 1.3: This is the indistinguishability game between the real and simulated worlds. Note that OSimProve(crs, x, w) returns SimProve(crs, x, td) without using w.

$$\varepsilon_{\mathsf{zk}} = \left| \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{Real}(\mathcal{A}) = 1 \Big] - \Pr \Big[\mathsf{Game}_{\mathsf{PKE}, 1^{\lambda}}^{Sim}(\mathcal{A}) = 1 \Big] \right| \le \mathsf{negl}(\lambda).$$

1.2 Naor-Yung CCA1 construction

Let PKE be a ε -IND-CPA public-key encryption scheme, and NIZK be a ($\varepsilon_{zk}, \varepsilon_{snd}$)-adaptive non-interactive zero-knowledge proof system. We recalled the Naor-Yung CCA1 construction that we saw during the lecture.

As in [NY90], we give the detailed construction as in Fig. 1.4

Theorem 1.3 ([NY90]). The public-key encryption scheme given in Fig. 1.4 is ε' -IND-CCA1 secure, with

$$\varepsilon' \le 2\varepsilon + 4\varepsilon_{\mathsf{zk}} + 2\varepsilon_{\mathsf{snd}}$$

Proof. We give the proof following a sequence of hybrid games $(\mathbf{G}_0, \ldots, \mathbf{G}_6)$, in which $\mathbf{G}_0 = \mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CCA1_0}}$ and $\mathbf{G}_6 = \mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CCA1_1}}$. By arguing that $\mathbf{G}_i \approx_c \mathbf{G}_{i+1}$ for all $i \in \{0, \ldots, 5\}$, we complete the proof.

We give the detailed hybrid game description as follows. We denote by pr_i the probability that the adversary outputs 1 in the game G_i . Note that with the above notation, we only need to prove that $|pr_0 - pr_6| \le negl(\lambda)$ We summarize all hybrid games in Fig. 1.5.

Alg Setup (1^{λ}) : Alg Enc(pk, m) : $\overline{\text{09 parse } (\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{crs})} =: \mathsf{pk}$ o1 $(\mathsf{pk}_0,\mathsf{sk}_0) \xleftarrow{\$} \mathsf{PKE}.\mathsf{Setup}(1^{\lambda})$ 10 $\mathbf{r}_0, \mathbf{r}_1 \xleftarrow{\$} \mathcal{R}$ 02 $(\mathsf{pk}_1, \mathsf{sk}_1) \xleftarrow{\$} \mathsf{PKE}.\mathsf{Setup}(1^{\lambda})$ 11 ct₀ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk₀, m; r₀) 03 crs $\stackrel{\$}{\leftarrow}$ NIZK.Setup (1^{λ}) 12 ct₁ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk₁, m; r₁) 04 $pk := (pk_0, pk_1, crs); sk := sk_0$ 13 $\pi \stackrel{\$}{\leftarrow} \mathsf{Prove}(\mathsf{crs}, (\mathsf{ct}_0, \mathsf{ct}_1), (\mathsf{m}, \mathsf{r}_0, \mathsf{r}_1))$ **Alg** Dec(sk, ct) : 14 return (ct_0, ct_1, π) $\overline{\text{05 parse } \mathsf{sk}_0 =: \mathsf{s}}\mathsf{k}; \ (\mathsf{ct}_0, \mathsf{ct}_1, \pi) =: \mathsf{ct}$ 06 check NIZK.Ver(crs, $(ct_0, ct_1), \pi) = 1$ 07 m := PKE.Dec(sk_0, ct_0) 08 return m

Figure 1.4: This is CCA1 Naor-Yung construction.

 \mathbf{G}_0 : This is the initial security game with the challenge bit b = 0.

 G_1 : This game is the same as in G_0 except that the challenger uses Sim for simulating the proof instead of honestly generating the zero-knowledge proofs.

Since the only difference is whether using the simulator to generate the proofs, we have

$$|\mathsf{pr}_0 - \mathsf{pr}_1| \le \varepsilon_{\mathsf{zk}}.$$

 \mathbf{G}_2 : In this game, we change the generation of ct_1 . In \mathbf{G}_2 , ct_1 is an encryption of m_1 instead of m_0 .

Notice that, the adversary \mathcal{A} has only access of $\mathsf{ODec}(\cdot)$ which uses only sk_0 . Therefore, any adversary \mathcal{B} which can distinguish \mathbf{G}_2 from \mathbf{G}_1 can also break the IND-CPA security of the underlying encryption scheme. Thus, we have

$$|\mathsf{pr}_2 - \mathsf{pr}_1| \le \varepsilon.$$

 \mathbf{G}_3 : In \mathbf{G}_3 , we switch the decryption key from sk_0 to sk_1 .

To analyze the probability of distinguishing \mathbf{G}_2 from \mathbf{G}_3 , we define a bad event Bad. Bad happens when the adversary submits a ciphertext $\mathbf{ct} = (\mathbf{ct}_0, \mathbf{ct}_1, \pi)$ to the decryption oracle with $\mathsf{Dec}(\mathsf{sk}_0, \mathsf{ct}_0) \neq \mathsf{Dec}(\mathsf{sk}_1, \mathsf{ct}_1)$ and $\mathsf{Ver}(\mathsf{crs}, (\mathsf{ct}_0, \mathsf{ct}_1), \pi) = 1$. Our first observation is that the adversary's view is different in \mathbf{G}_2 and \mathbf{G}_3 only if Bad happens in \mathbf{G}_2 . Therefore, we have $|\mathsf{pr}_2 - \mathsf{pr}_3| \leq \Pr[\mathsf{Bad}]$. Our second observation is that Bad can also happen in \mathbf{G}_0 , \mathbf{G}_1 and \mathbf{G}_2 , we denote these event by Bad_i with $i \in \{0, 1, 2\}$. We can have the following analysis:

- In G_0 the crs is generated by an honest NIZK.Setup algorithm, we have $\mathsf{Bad}_0 \leq \varepsilon_{\mathsf{snd}}$.
- Since the probability of distinguishing \mathbf{G}_0 and \mathbf{G}_1 is bounded by $\varepsilon_{\mathsf{zk}}$, and Bad can be detected by the adversary himself, we have

$$\Pr[\mathsf{Bad}_1] \le \Pr[\mathsf{Bad}_0] + \varepsilon_{\mathsf{zk}} = \varepsilon_{\mathsf{snd}} + \varepsilon_{\mathsf{zk}}$$

• The change in \mathbf{G}_2 happens after all decryption queries. Therefore, we have $\Pr[\mathsf{Bad}_2] = \Pr[\mathsf{Bad}_1] \leq \varepsilon_{\mathsf{snd}} + \varepsilon_{\mathsf{zk}}$.

In summary, we have

$$|\mathsf{pr}_3 - \mathsf{pr}_2| \le \varepsilon_{\mathsf{snd}} + \varepsilon_{\mathsf{zk}}.$$

 \mathbf{G}_4 : In the game \mathbf{G}_4 , we change the message m_0 in ct_0 to ct_1 .

Similar to the argument in \mathbf{G}_2 , now the decryption oracle does not use sk_0 , thus we can bound the probability of distinguishing \mathbf{G}_3 and \mathbf{G}_4 by the IND-CPA security of PKE. We have

$$|\mathsf{pr}_4 - \mathsf{pr}_3| \le \varepsilon.$$

 \mathbf{G}_5 : In the game \mathbf{G}_5 , we change back the decryption oracle using sk_0 . Similarly to \mathbf{G}_3 , we have

$$|\mathsf{pr}_5 - \mathsf{pr}_4| \le \varepsilon_{\mathsf{snd}} + \varepsilon_{\mathsf{zk}}.$$

 G_6 : In G_6 , we use the (Setup, Prove) instead of (SimSetup, SimProve). Similar to G_1 , we have

$$|\mathsf{pr}_6 - \mathsf{pr}_5| \le \varepsilon_{\mathsf{zk}}.$$

We can notice that \mathbf{G}_6 is exactly the same as $\mathsf{Game}_{\mathsf{PKE},1^{\lambda}}^{\mathrm{IND-CCA1_1}}$. By the triangle inequality we have

$$\begin{split} |\mathsf{pr}_6 - \mathsf{pr}_0| &\leq |\mathsf{pr}_6 - \mathsf{pr}_5| + |\mathsf{pr}_5 - \mathsf{pr}_4| + |\mathsf{pr}_4 - \mathsf{pr}_3| + |\mathsf{pr}_3 - \mathsf{pr}_2| + |\mathsf{pr}_2 - \mathsf{pr}_1| + |\mathsf{pr}_1 - \mathsf{pr}_0| \\ &\leq 2\varepsilon + 4\varepsilon_{\mathsf{zk}} + 2\varepsilon_{\mathsf{snd}}. \end{split}$$

$Game_{PKE,1^{\lambda}}^{\mathrm{IND-CCA1}}(\mathcal{A})$		$\mathbf{Oracle} \ ODec(sk,ct):$
$01 (pk_0, sk_0) \stackrel{\$}{\leftarrow} PKE.Setup(1^{\lambda})$		17 parse sk ₀ =: sk; (ct ₀ , ct ₁ , π) =: ct
$(\mathbf{p}_{1}, \mathbf{s}_{1}) \stackrel{\$}{\leftarrow} PKE.Setup(1^{\lambda})$		18 check NIZK.Ver(crs, (ct ₀ , ct ₁), π) = 1 19 m := PKF.Dec(sk ₀ , ct ₀) // G ₀ 25 g
o3 crs $\stackrel{\$}{\leftarrow}$ NIZK.Setup (1^{λ})	$//\mathbf{G}_{0,6}$	20 m := PKE.Dec(sk ₁ , ct ₀) //G ₃₋₄
04 (crs, td) $\stackrel{\$}{\leftarrow}$ NIZK.SimSetup (1^{λ})	$//\mathbf{G}_{1-5}$	21 return m
05 $pk := (pk_0, pk_1, crs); \ sk := sk_0$		
of $(m_0,m_1,st) \stackrel{\$}{\leftarrow} \mathcal{A}_0^{ODec(\cdot)}(pk)$		
o7 $\mathbf{r}_0, \mathbf{r}_1 \stackrel{\$}{\leftarrow} \mathcal{R}$		
os ct ₀ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk ₀ , m ₀ ; r ₀)	\mathbf{G}_{0-3}	
og ct ₀ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk ₀ , m ₁ ; r ₀)	\mathbf{G}_{4-6}	
10 ct ₁ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk ₁ , m ₀ ; r ₁)	$//\mathbf{G}_{0-1}$	
11 ct ₁ $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk ₁ , m ₁ ; r ₁)	$//\mathbf{G}_{2-6}$	
12 $\pi \xleftarrow{\$} Prove(crs,(ct_0,ct_1),(m,r_0,r_1))$	$//\mathbf{G}_{0,6}$	
13 $\pi \xleftarrow{\$} SimProve(crs, td, (ct_0, ct_1))$	$//\mathbf{G}_{1-5}$	
14 ct := (ct_0, ct_1, π)		
15 $b' \stackrel{\$}{\leftarrow} \mathcal{A}_1(st,ct)$		
16 return b'		

Figure 1.5: This is a summary of all hybrid games. The code line ends with $//\mathbf{G}_i$ only appears in security game \mathbf{G}_i .

References

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing, pages 427–437, Baltimore, MD, USA, May 14–16, 1990. ACM Press.