SD04630230: %yt 5 X Heiik 2023412 H 7 H

Note 1: Naor-Yung i# 551k
Lecturer: 42K

Bot W] Z U T L AR FRE T 24 SRR, YAKTEFTH TEX BRI TFE., UL
RAFBITGHTaE LT, TALEREIRD L o

1.1 Preliminaries

In this section, we first introduce some useful notations and formal definitions.

Notation: We denote probabilistic polynomial Turing machine by PPT. We denote that two distribution is
computationally indistinguishable by Dy . D;.

Algorithms: We use z & Alg to present an algorithm randomly generating an output z, and x := Alg to

present an algorithm deterministically generating an output z. We use A°AE() to present an algorithm
with oracle access to OAlg.

Pseudo-code: We use check to check if the following condition is fulfilled; the algorithm aborts otherwise.
We use parse x =: y to parse y into the variable x.

Negligible Function: We denote the negligible functions with respect to the security parameter A by
negl(A). We recall that a function f is negligible, if for all polynomial p(-), there exists a Ag such that

1
YA > Ao.f(N) < 5y

Language: For any NP language £, we denote a statement x in language £ with witness w by x €,, L.

1.1.1 Public Key Encryption scheme

Definition 1.1 (Public Key Encryption). A public key encryption scheme consists of three PPT algorithms
PKE = (Setup, Enc, Dec) with the following syntaz:

o Setup(1*) — (pk,sk) : takes the security parameter 1* as input, and returns a public key pk and a
secret key sk.

o Enc(pk,m;r) — ct: takes the public key pk, the message m, the randomness r as input, and returns a
ciphertext ct.

o Dec(sk,ct) — m : takes the secret key sk, the ciphertext ct as input, and returns a message m.
We also require the following properties:

e Correctness: For all messages m € M in the message space, for all randomness r € R in the

randomness space, and for all key pairs (pk, sk) & Setup(1?), we have

Dec(sk, Enc(pk, m;r)) = m

1-1

Note 1: Naor-Yung i@l Jfl #5414 1-2

o Semantic Security: PKE is e-IND-CPA secure, if for all two-stages PPT adversary A = (Ag, A1)

with an internal state st, we first define the security games Gameg\&]g'SPA” (A) as in Fig. . We say

IND-CPA
prE1r (A :

01 (pk,sk) < Setup(1*)
02 (mg, my, st) & Ao (pk)
03 r & R; ctp := Enc(pk, mp;r)

0a b & Ay (st, ctp)
05 return b’

Game

Figure 1.1: This is the IND-CPA security game with bit b € {0,1}.

that the public-key encryption scheme PKE is IND-CPA secure, if and only if

E =

Pr [Gameﬁ%ﬁpA" (A) = 1] —Pr [Gamef,TEfAPAl (A) = 1} ‘ < negl(\).
o IND-CCA1 Security: PKE is e-IND-CCAL1 secure, if for all two-stages PPT adversary A = (A, A1)

with an internal state st, we first define the security games Game{,ilé:gCAlb(A) as in Fig. .

GameND-COAT (4 . Oracle ODec(ct)

PKE, 1 Dec(sk, ct)
$ N 06 m := Dec(sk, ct
01 (pk,sk) <= Setup(1?) 07 return m

02 (mg, my, st) & A2P=<0) (pk)
03 r & R; ctp := Enc(pk, mp;r)

0u b <& Aj (st, ctp)
05 return

Figure 1.2: This is the IND-CCA1 security game with bit b € {0,1}.

We say that the public-key encryption scheme PKE is IND-CCA1 secure, if and only if

€= ‘Pr [Gameﬁg:ﬁcmo (A) = 1] —Pr [Gameﬁ%ﬁCAh(A) = 1} ‘ < negl(A).

1.1.2 Non-Interactive Zero-Knowledge Proof

Definition 1.2 (NIZK). Let £ be an NP language, an adaptive non-interactive zero-knowledge proof system
consists of three PPT algorithms NIZK = (Setup, Prove, Ver) with the following syntax
. Setup(1>‘) — crs : takes a security parameter 1% as input, and returns a common reference string crs.

o Prove(crs,x,w) — 7 : takes a common reference string crs, a statement x, a witness w as input, and
returns .

o Ver(crs,x,m) — {0,1} : takes a common reference string crs, a statement x, and a proof m as input,
and returns a result bit b € {0,1}.

We require the following properties:

Note 1: Naor-Yung i@l Jl 1L, 1-3

e Completeness: For all statements x €,, L, for all honestly generated common reference string crs &
Setup(1?), we have

Ver(crs, x, Prove(crs, x,w)) = 1.
e Soundness: NIZK is egnq-sound, if for all PPT adversary A, we have

B s A
Prl Ver(crs,x,m) =1 | &g = crs < Setup(1?) < negl()).

AXx & L

T Alcrs, x)

e Zero-Knowledge: NIZK is e,c-zero-knowledge, if for all PPT adversary A with running time t,x,there
exists a two-stage PPT algorithm Sim = (SimSetup, SimProve) with the following syntaz:

— SimSetup(1*) — (crs,td) : takes a security parameter 1* as input, and returns a crs and a
stmulation trapdoor td.

— SimProve(crs, x,td) — 7 : takes a crs, a statement x, and a trapdoor td as input, and returns a
simulated proof .

We require that the simulated SimSetup and SimProve are indistinguishable from the real one for any
PPT adversary. More formally, for all PPT adversaries, the following two games are indistinguishable:
We require that the following requirement holds

Gameﬁ,ﬁ‘éfp (A): Gamegﬁﬁlx (A):
01 crs < Setup(1*) 03 crs < SimSetup(1*)
02 return AOProve(crs:) (crs) 04 return AOSmProve(crs,) (¢rg)

Figure 1.3: This is the indistinguishability game between the real and simulated worlds. Note that
OSimProve(crs, x, w) returns SimProve(crs, x, td) without using w.

= pefoomeio 4 = 1] - rfcome)= 1] < e

1.2 Naor-Yung CCA1 construction

Let PKE be a e-IND-CPA public-key encryption scheme, and NIZK be a (g4, £snd)-adaptive non-interactive
zero-knowledge proof system. We recalled the Naor-Yung CCA1 construction that we saw during the lecture.

As in [NY9(0], we give the detailed construction as in Fig. Q
Theorem 1.3 ([NY90]). The public-key encryption scheme given in Fig. is &' -IND-CCA1 secure, with

e’ < 2e 4+ ey + 2€end

Proof. We give the proof following a sequence of hybrid games (G, ..., Gg), in which Gy = Game{)i[E)'SCAlo
and Gg = Gameﬁ?'ﬁcml. By arguing that G; ~. G, for all i € {0,...,5}, we complete the proof.

We give the detailed hybrid game description as follows. We denote by pr; the probability that the adversary
outputs 1 in the game G;. Note that with the above notation, we only need to prove that |pry — prg| < negl(\)
We summarize all hybrid games in Fig. [L.5.

Note 1: Naor-Yung i@l Jfl #5414 1-4

Alg Setup(1?) : Alg Enc(pk,m) :

01 (pky, ko) < PKE.Setup(1*) 09 parse (pko, pky, crs) =: pk
02 (pky,sk;) < PKE.Setup(1*)
03 crs < NIZK.Setup(1*) 5
04 pk := (pkg, pky, crs); sk := sk, 12 Ct1$<_ PKE.Enc(pk;, m;r1)

Alg Dec(sk, ct) : 13 7 < Prove(crs, (cto, ct1), (m, rg,r1))
05 parse sk, =: sk; (cto,cty,T) =: ct 14 return (cto, cty,)

o6 check NIZK.Ver(crs, (cto,cty),m) =1

07 m := PKE.Dec(sk, cto)

08 return m

10 ro, I (i R
11 cto & PKE.Enc(pkgy, m;rg)

Figure 1.4: This is CCA1 Naor-Yung construction.

Gy : This is the initial security game with the challenge bit b = 0.

G : This game is the same as in Gg except that the challenger uses Sim for simulating the proof instead of
honestly generating the zero-knowledge proofs.

Since the only difference is whether using the simulator to generate the proofs, we have

lpro — pri| < ex.

G : In this game, we change the generation of ct;. In Go, ct; is an encryption of m; instead of mg.

Notice that, the adversary A has only access of ODec(-) which uses only sk,. Therefore, any adversary
B which can distinguish Gy from G; can also break the IND-CPA security of the underlying encryption
scheme. Thus, we have

lpry —pry| < e.

Gs : In Gg, we switch the the decryption key from sk to sk;.

To analyze the probability of distinguishing Go from Gs, we define a bad event Bad. Bad happens when the
adversary submits a ciphertext ct = (ctg, cty,) to the decryption oracle with Dec(sk, ctg) # Dec(sky, ct;)
and Ver(crs, (cto, cty), m) = 1. Our first observation is that the adversary’s view is different in Go and Gs
only if Bad happens in Gg. Therefore, we have |pry — prs| < Pr[Bad]. Our second observation is that Bad
can also happen in Gg, G; and Ga, we denote these event by Bad; with ¢ € {0,1,2}. We can have the
following analysis:

e In Gy the crs is generated by an honest NIZK.Setup algorithm, we have Badg < egpg-

e Since the probability of distinguishing Gy and G; is bounded by e,, and Bad can be detected by the
adversary himself, we have

PI‘[Badﬂ < Pr[BadO] + €2k = Esnd T+ €2k

o The change in Gz happens after all decryption queries. Therefore, we have Pr[Bads] = Pr[Bad;] <
€snd T Ezk-

Note 1: Naor-Yung i@l Jfl #5414

In summary, we have

|pr3 - pr2| < Esnd + Ezk-

Gy : In the game G4, we change the message mg in cty to cty.

Similar to the argument in Gg, now the decryption oracle does not use sk, thus we can bound the probability

of distinguishing G and Gy4 by the IND-CPA security of PKE. We have

Gs

lpry — prg| < e.

: In the game G5, we change back the decryption oracle using sk,. Similarly to Gs, we have

|pr5 - pr4| < Esnd Tt Ezk-

Gg : In Gg, we use the (Setup, Prove) instead of (SimSetup, SimProve). Similar to G1, we have

We can notice that Gg is exactly the same as Game

Iprg — prol < |prg — prs| + [prs —
S 2e + 4€zk + 255nd-

Ipre — prs| < .

,IDI;I(]E:SCAM- By the triangle inequality we have

pry| + |pry — prs| + |prs — pro| + [pry — pry| + [pry — pro

1-5

Game

IND-CCA1
PKE,1* (A)

01

03

04
05

06

07

08

09

10

11

12

13
14

15
16

(pkg, skg) & PKE.Setup(1*)

2 (pky,sk;) & PKE.Setup(1*)

crs <& NIZK.Setup(1*)

(crs, td) <& NIZK.SimSetup(1*)
pk := (pkg, pkq, crs); sk := sk,

(mo, my, st) <& A9P=<0) (pk)
ro, r1 Er
ctoy <— PKE.Enc(pkg, mo; ro)
cto & PKE. Enc(pky, m1;ro)
cty ﬁ PKE.Enc(pky, mg;r1)
& PKE. Enc(pky, m1;r1)
& Prove(crs, (cto, ct1), (m,ro,r1))
rd SimProve(crs, td, (cto, cty))
ct := (cto, cty,)
by & A (st, ct)
return b’

//Goe
//G1-5

Go_3
Gy 6
//Go-1
//Ga—6
//Goe
//G1-s

Oracle ODec(sk, ct) :
17 parse sk, =: sk; (cto,cty, 7) =: ct

18 check NIZK.Ver(crs, (ctg,cty),m) =1

19 m := PKE.Dec(sk, cto) //Go—2,5—6
20 m := PKE.Dec(skq, ctg) //Gs_4a
21 return m

Figure 1.5: This is a summary of all hybrid games. The code line ends with //G; only appears in security
game G;.

O

Note 1: Naor-Yung i@l Jl 1L, 1-6

References

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd Annual ACM Symposium on Theory of Computing, pages 427-437, Baltimore, MD,
USA, May 14-16, 1990. ACM Press.

	Preliminaries
	Public Key Encryption scheme
	Non-Interactive Zero-Knowledge Proof

	Naor-Yung CCA1 construction

